Additive and Multiplicative Properties of Beta - Integers

نویسندگان

  • Christiane Frougny
  • Jean-Pierre Gazeau
  • Rudolf Krejcar
چکیده

| To each number > 1 there corresponds a discrete countable set of numbers denoted by Z and named set of beta-integers. The set Z is precisely the set of real numbers which are polynomial in when they are written in \basis ", and Z = Zwhen 2 N. We prove here a list of arithmetic properties of Z : addition, multiplication, relation with integers, when is a quadratic Pisot-Vijayaraghavan unit (quasicrystallographic innation factors are particular examples). We also consider the case of a cubic Pisot-Vijayaraghavan unit associated with the seven-fold cyclotomic ring. R esum e. | A chaque nombre > 1 correspond un ensemble d enombrable discret de nombres, d enot e Z et baptis e ensemble des beta-entiers. Z est en fait form e de tous les r eels qui sont polynomiaux en lorsqu'on les ecrit en \base ", et il se confond avec Zlorsque est un naturel > 1. Un ensemble de propri et es arithm e-tiques de Z , addition, multiplication, relation avec les entiers, sont ici pr esent ees lorsque est un nombre de Pisot-Vijayaraghavan quadratique unitaire quelconque. Nous rappelons que les facteurs d'innation en quasicristallographie en sont des cas particuliers. Nous traitons aussi le cas d'un nombre de Pisot cubique unitaire associ e a l'anneau cyclotomique a sym etrie d'ordre 7.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of Martindale's theorem to $(alpha, beta)-$homomorphism

Martindale proved that under some conditions every multiplicative isomorphism between two rings is additive. In this paper, we extend this theorem to a larger class of mappings and conclude that every multiplicative $(alpha, beta)-$derivation is additive.

متن کامل

Beta - Integers as Natural Counting Systems

Recently, discrete sets of numbers, the-integers ZZ , have been proposed as numbering tools in quasicrystalline studies. Indeed, there exists a unique numeration system based on the irrational > 1 in which the-integers are all real numbers with no fractional part. These-integers appear as being quite appropriate to describing some quasilattices relevant to quasicrystallography when precisely is...

متن کامل

Additive and Multiplicative Properties Ofpoint Sets Based on Beta

| To each number > 1 correspond abelian groups in R d , of the form = P d i=1 Z e i , which obey. The set Z of beta-integers is a countable set of numbers : it is precisely the set of real numbers which are polynomial in when they are written in \basis ", and Z = Zwhen 2 N. We prove here a list of arithmetic properties of Z : addition, multiplication, relation with integers, when is a quadratic...

متن کامل

On the superstability of a special derivation

The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.

متن کامل

Some Remarks about Additive and Multiplicative Functions

The present paper contains some results about the classical multiplicative functions (n), a(n) and also about general additive and multiplicative functions. (1) It is well known that n/{n) ^x.) It is known that both fi(x) and fï(x) are strictly inc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007